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Learning outcomes from Lecture 3

e Be able to explain why confining a particle on a ring leads to
guantization of its energy levels

e Be able to explain why the lowest energy of the particle on a ring
IS zero

e Be able to apply the particle on a ring approximation as a model
for the electronic structure of a cyclic conjugated molecule (given
equation for E,).

Assumed knowledge

Be able to predict the number of it electrons and the presence of
conjugation in a ring containing carbon and/or heteroatoms such as
nitrogen and oxygen. Be able to convert between energy and
spectroscopic units (J, eV, Hz and nm)
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The Coulomb integral, ¢

QA is known as the Coulomb integral and takes account of the self energy
of an orbital and the attractive potential of the other nuclei. Since this is

attractive, the Coulomb integral is negative. At large interatomic
distances, the value of this integral is the atomic orbital energy, which is

also negative.
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The Resonance integral,

,3 is @ measure the strength of the bonding interaction

as a result of the overlap of orbitals y,,, and 1, . It is negative
(attractive) where the orbitals constructively overlap, and is zero at large

separation.
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When two p-orbitals interact, they are split by 2. The bonding orbital has an
energy of a + 3, where both integrals are negative.



7t MOs of Benzene




7t MOs of Benzene

cos(30) * where is sin(30)7?7?




MOs on a ring
these are the unhybridized

2 +~~ 2p orbitals

J = P,

this is the
particle-on-a-ring wave

this is here to keep
the total
“probability” to 1

Construct MOs as atomic orbitals multiplied by the particle-on-a-ring wavefunctions.



orbital energies

Coefficients of p orbitals given by
Particle-on-a-ring wavefunction

e ZTNN

6f ¢ ¢1 + Cz¢2 Tt C6¢6 C1 P +C P, ...+ C6¢6

= O + 2/3 CcO S( ] z_ﬂ) for benzene, see appendix for derivation
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7t orbitals of benzene

<5j> =0{+2/3cos(j2?ﬂ)

The six p orbitals all
have the same energy
... interact and mix




a geometrical mnemonic
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a geometrical mnemonic for N-membered rings

<5j>=a+2/3’cos j%

H
HAH HAH .
cyclopropenyl cyclobutadiene cyclopentadienyl benzene

radical radical



a geometrical mnemonic for N-membered rings
centred at e=q, radius=2

4n+2 membered rings are stable, and are refered to as aromatic.



benzene

Question: what is the energy of the HOMO-
LUMO transition, given the formula for the energy
levels?

<£j>=a+2/)’c0s j%

Answer: We find that the transition is from
j=1toj=2.Substituting,

E=a+p
E,=0—
E,—& =-20

The HOMO-LUMO transition is -23.



benzene

Question: from the calculated expression
of the HOMO-LUMO transition, calculate an
experimental value for the resonance
integral, 3, taking

1) the intense transition in the figure for
calibration,

2) the lowest energy transition for
calibration.

Answer: The calculated energy of the
HOMO-LUMO transition is -2f3. This
corresponds to photons of wavelength
around 180 nm, for the intense
transition, or 260nm for the lowest
transition. Thus,

-23 = hc/(180x107?)

=1.10x10%° ) =6.89 eV
1) p=-3.44eVor
2) p=-2.38¢eV
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Hiraya and Shobatake, J. Chem. Phys. 94, 7700 (1991)




annulenes

Question: [14]-annulene and [16]-annulet
are pictured. Which is aromatic?

Answer: The 4n+2 rule applies to [14]-
annulene, n=3, but not [16]-annulene,
which is antiaromatic.

Question: How many m-electrons in [18]-

annulene? What are the values of j for the
HOMO and the LUMOQO?

Answer: There are 18 m-electrons, so the
transition is fromj=4toj=5. (draw a
picture)

[18]-annulene



annulenes

Question: Predict the lowest energy at
which [18]-annulene might absorb strongly,
given your smaller calculated value for 3
from benzene.

27T
Answer: gj=a+2/)’cos j—

N H H

[18]-annulene
27T

84 =a+ 2/3 COS 4— 53."'50.-* ‘isz"'so \‘ S=35
18 g e[ T — '
=a+0.347p
e,=a-0347p
85 — 84 = —0695/3) 77K
=1.65¢V |
This corresponds to 750 nm, or 13300 cm™, L - Nl

which is a value supported by experiment. 5 (0%




Learning outcomes

e Recall and apply the 4n+2 rule for aromaticity
eRecognize and interpret the polygon mnemonic for the energy
levels of a conjugated cyclic compound.

eBe able to apply molecular orbital theory as a model for the
electronic structure of a conjugated ring molecule (given equation

for E)).



Next lecture

* Vibrational spectroscopy: the simple
harmonic oscillator

Week 10 tutorials

« Schrodinger equation and molecular
orbitals for diatomic molecules



Practice Questions

1. Benzene absorbs at 260 nm, corresponding to the HOMO — LUMO
transition.

(a) What is the spectroscopic value of B in eV and Joules.

(b) Calculate the total energy of the 11 electrons in benzene using this
value

(c) Anisolated C=C 1 bond has energy o + 3. What is the total energy
of the 1 electrons in three C=C bonds

(d) Using your answer to (b) and (c), what is the aromatization energy?

2. Draw a circle and inscribe an equilateral triangle inside such that one
vertex lies at the 6 o’clock position. The points at which the two figures
touch are the 1T energy levels.

3. Repeat for 4, 5 and 6 membered rings.



Appendix

The following is a derivation of the energy formula for molecular orbitals on a ring.



complex wavefunctions

exp(i ij 6’) = cos( j 6’) +] sin( j 6’)
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Since the sin and cos wavefunctions are degenerate, we may make linear
combinations of these to make new solutions. It will simplify the mathematics to
use these complex forms of the wavefunctions. We can now distinguish

between the two degenerate solutions as xj, which is like going around the ring
one way, or the other.




energies

=f‘P*FI‘Pdr
_fz exp( l]—)¢ HE exp(zj 2ﬂ)¢ dt

éf( 1¢1 b Cz¢2 + C3¢3 + C4¢4 + Cs¢5 + C6¢6 )]:[(Cl D+ Co0, + C305 +Cu Py + C5Ps + C P )d‘L'
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The interaction between an orbital and itself is a, the Coulomb integral.
The interaction between an orbital and an adjacent one is the Resonance integral, B.
The interaction between non-adjacent orbitals is ignored.



energies
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